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Inverted Pendulum

This program is a demonstration of hierarchical control, an application to a classical control problem.   
A pendulum is mounted on a cart so it can swing through 360 degrees.  A motor on the cart can accelerate 
it left and right, and sensors are provided for linear acceleration, velocity, and position of the cart, as well 
as angular acceleration, velocity, and position of the pendulum.  A fi ve-level hierarchical control system 
controls bob position relative to a reference position the user can set with the mouse, as follows:

1. The bob’s angular position error is corrected by varying the angular velocity reference signal;
2. The bob’s angular velocity error is corrected by varying the angular acceleration reference signal;
3. The bob’s angular acceleration error is corrected by varying the cart’s position reference signal 

 (with gravity providing the acceleration);
4. The cart’s position error is corrected by varying the cart’s linear velocity reference signal;
5. The cart’s velocity error is corrected by varying the cart’s linear acceleration reference signal;
6. The cart’s linear acceleration is varied by varying the motor torque.

         Bill Powers

Providing a reasonable, effi cient explanation for the inverted pendulum is very important to 
any effort to explain how standing and walking animals can keep their balance so very well.  
Thus the inverted pendulum it is of great signifi cance to the design of robots as well.

In April 2004, I could not fi nd any existing writeup for the Inverted Pendulum 
program, so I drew upon Richard Kennaway’s work to create one.  See pages 
8 and 9.  In June 2004, Bill Powers remembered that his original writeup, 
while lost on his own computer due to a crash, might be available elsewhere.  
It was found and is reproduced here on pages 2 through 7.  A student of the 
inverted pendulum may benefi t from reading both writeups.

Dag Forssell
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An experiment with a simple method 
for controlling an inverted pendulum

ABSTRACT

A simulated inverted pendulum consisting of a bob on a shaft hinged to a movable cart is controlled by a 
hierarchy of 5 simple control systems.  The simulation of the physical system treats the cart and bob as free 
masses connected by a spring acting in the direction of the shaft.  No trigonometric functions are required.  
The user of the program can set a reference position with the mouse, after which the control systems move 
the cart carrying its balanced pendulum to place the bob at any selected position in the x direction.  This is an 
experimental design, with no serious attempt to optimize performance.  Nevertheless, performance is better 
than a human being could produce.

INTRODUCTION

This paper addresses two subjects relating to simula-
tion and control, the fi rst being a simplifi ed method 
for simulating a mechanical system and the second 
being a method for achieving control of an inverted 
pendulum.  The methods may be suggestive of 
broader applications, and are presented here despite 
their incomplete form so that others may help extend 
the principles.

The test bed is a computer-simulated pendulum 
mounted upside down on a simulated movable cart.  
The shaft and bob are hinged to a cart that can roll 
in the x direction on rails.  The plane of motion of 
the pendulum is vertical and includes the direction 
of motion of the cart.  The fi rst phase of this project 
involves simulating the pendulum itself in a way that 
appeals only to fundamental physical relationships 
rather than solutions of analytical equations.  The 
second phase involves developing a control system 
consisting of subsystems that control successively 
higher time-integrals of physical variables until a 
level is reached that can control the position of the 
bob in the x direction.  Each control subsystem is 
very simple.

SIMULATING THE PENDULUM

The mechanical assembly being simulated consists 
of a rolling cart and a bob, each treated as a point-
mass, and a shaft connecting the bob to a hinge on 
the cart.  The bob weighs 1 Kg, the cart weighs 0.1 
Kg, and the shaft is considered weightless.  See the 
upper part of Figure 1.

The cart is confi ned to motion along the x axis; 
the bob can move in two dimensions, x and y.  The 
two masses are connected by the shaft, which is not 
considered rigid as in the usual physical approxima-
tions, but is treated as a spring with a resting length 
L0.  The spring can extend or shorten, but does not 
bend.  When the bob and the cart are in specifi c posi-
tions, the distance between their centers is the length 
L of the shaft; this length implies a force of

(1) F = ke*(L - L0),  where 

F = force in newtons,
ke = spring constant, newtons/meter
L = actual length of shaft, stretched or compressed
L0 = resting length of shaft

The force generated by the spring acts along the direc-
tion of the shaft between the bob and the cart, pulling 
them together or pushing them apart.  The result is 
to accelerate both objects: the cart to the left or right 
along its rail, and the bob in some direction in x-y 
space.  Computing the acceleration is simplifi ed by 
computing x and y acceleration separately.  
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For the bob, the x force Bob.fx is simply the ratio 
of the x displacement of the bob relative to the cart 
divided by the shaft length L, times the force in the 
direction of the shaft.  Since the force along the hy-
potenuse of the triangle is known, we can compute 
the x and y forces using similar triangles instead of 
trigonometric functions.  The acceleration is the force 
divided by the mass, Bob.Mass:

Bob.Ax = F*(Bob.x - Cart.x)/(Bob.Mass*L)

The y acceleration is 
Bob.Ay = F*(Bob.y - Cart.y)/(Bob.Mass*L)

For the cart, the expressions are the same except that 
“cart” is substituted for “bob” in the variable names1.

We have the x and y accelerations of the bob and 
the x acceleration of the cart, so we can proceed to 
integrate once to get velocity and again to get position 
in both the x and y directions for both masses.  The in-
tegration is done over a very short time-duration (here 
0.0001 second) to get a new set of x and y positions 
for the bob and cart.  Then, with the bob and cart in 
slightly different new positions, we can compute the 
new length of the shaft, new forces and accelerations, 
and new bob and cart positions to use during the next 
ten-thousandth of a second.  This is the basic process 
of simulation in which we compute the new state of 
a system after a very short time interval, and then 
compute the new forces acting on the system during 
the next time interval.  This process is repeated mil-
lions of times during a run of a simulation.

This permits us to simulate the behavior of the sys-
tem without going through an abstract mathematical 
analysis.  This method is very close to working with 
the physical system itself, and has the great advantage 
that nonlinear relationships are just as easy to work 
with as linear ones.

The computer program actually used calculates 
an added force dependent on the velocity of exten-
sion or contraction of the shaft; the amount of this 
“viscous damping” force is selected to make any 
high-frequency oscillations of the masses at the ends 
of the spring damp out rapidly.  The spring constant 
used for the shaft is about 10 million newtons per 
meter, so the shaft is very stiff: a weight of 1 kilogram 
hanging from the shaft would stretch it by about 
one micron or 25 millionths of an inch.  The shaft 
is hardly distinguishable from the classic “rigid rod” 
used in mathematical analysis of similar mechanical 
systems.  But its non-rigidity makes all the difference 
in the analysis.

There are several practical advantages of this 
method of simulating a mechanical system.  It is 
not necessary to fi nd mathematical forms for all the 
relationships.  No differential equations have to be 
solved analytically.  No trigonometric functions, 
which are slow to compute, are used.  One point that 
does need investigation is how close this way of treat-
ing the physical system comes to an exact analytical 
representation of its behavior.

THE CONTROL SYSTEMS

Two sets of control systems are used.  The fi rst set posi-
tions the cart, and the second set positions the pendu-
lum bob by using the cart-positioning systems.

A force applied to the cart in the x direction will 
cause it to accelerate, its velocity increasing at a con-
stant rate for a constant applied force.  In Fig. 1, the 
smallest closed loop in the lower right corner is the 
cart velocity control system.  For all control systems 
it is assumed that a suitable sensor for the controlled 
variable, here linear velocity, exists.

The sensed velocity in the x direction, Cart.vx, 
is compared with a reference velocity signal coming 
from above, and the error signal, the difference, is 
amplifi ed and converted to a force applied to the 
cart.  Everything in this loop responds proportionally 
except for the time-integration in the box, which rep-
resent the conversion of applied force to acceleration 
and the conversion of acceleration to velocity, which 
are basic physical relationships.  This loop, with one 
integration in it, is inherently stable.  If the output 
parameter (here, a factor of 200) is large enough, the 
sensed velocity will closely track the reference veloc-
ity, shown entering the comparator (C) from above.  

1  The notation here is that of computer program-
ming, not normal mathematics.  The explicit 
multiplication sign (*) allows variables to be given 
multiple-letter names rather than being repre-
sented by single letters.  Variables are grouped into 
“records” which can contain lists of symbols.  For 
example, the record named “Bob” has sub-symbols 
x,vx,ax,fx,y,vy,ay, and fy.  The letter x indicates po-
sition, v is velocity, a is acceleration, and f is force.  
Thus Bob.ay means the y direction of acceleration 
of the Bob, Cart.vx means the x direction of velocity 
of the Cart, and Bob.y means the y position of the 
Bob.  With this key, the equations in the upper part 
of Fig. 1 become self-explanatory.
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The feedback involved in this control process will 
see to it that changes in the sensed velocity are nearly 
simultaneous with variations in the reference signal, 
so the control system as a whole behaves very nearly 
like a proportional link.  It is this property of negative 
feedback control that makes the hierarchical control 
process so easy to stabilize.

The controlled velocity is integrated again to 
calculate the position of the cart—in effect, velocity 
is multiplied by elapsed time to get distance traveled 
(over a period of 0.0001 second).  In the next higher 
control system, the sensed distance is compared with a 
reference distance signal by the second level compara-
tor (C in a box), the error signal being amplifi ed to 
become the reference velocity for the fi rst-level system.  
Because the fi rst-level integration has been made al-
most into a proportional response, the second loop 
can be made very sensitive without causing instability.  
In this case the error signal is multiplied by 200.  The 
result is that the cart position follows the reference 
position signal very closely and quickly.

The cart, with the bob standing approximately 
vertically above it, must move in the direction of lean 
of the bob to create a lean in the other direction and 
slow the bob to a stop.  To achieve this, the present 
strategy was fi rst to get control of bob acceleration, 
use that to get control of bob velocity, and fi nally to 
use that to get control of bob position.

The acceleration of the bob is affected by the 
distance of the cart to the left or right underneath 
the bob.  The fi rst bob control system senses the cart 
position relative to the bob, and keeps it at whatever 
relative position is set by the reference signal.  As 
the bob accelerates left or right, the cart also acceler-
ates, keeping the angle of lean and the acceleration 
constant.

The bob acceleration is integrated (by the physics 
of nature) to generate the bob velocity.  In the second 
bob control system, bob velocity is sensed and com-
pared with a reference velocity, and the difference or 
error is amplifi ed to produce the reference signal for 
the acceleration control system.  

To establish a velocity to the right, the cart must 
move at fi rst to the left, creating a lean of the bob to 
the right.  Then, as the velocity increases toward the 
reference velocity, the lean decreases (the cart moves 
right and catches up to the bob), and the bob then 
continues moving at the specifi ed velocity while 
remaining upright above the cart.  All this happens 
completely automatically; the cart is made to move 

left when the acceleration is too low, and right when 
it is too high, and that is all that is necessary to do.

Finally, bob velocity is integrated as in nature to 
produce bob position, and bob position is compared 
with a reference position to produce a position error 
signal.  This error signal is amplifi ed to generate the 
velocity reference signal, closing the fi nal loop.

LIMITS OF PERFORMANCE

The forces that balance the bob are actually produced 
by gravity.  The control systems, by moving the sup-
porting cart left and right underneath the bob, can 
direct these gravitational forces to create the neces-
sary balancing forces.  However, this can work only 
if the bob remains within some fairly small angle of 
the vertical over the cart (about plus and minus 30 
degrees).  Within this range, a leftward movement of 
the cart produces a rightward acceleration of the bob.  
As the bob moves out of this range, the direct effect of 
cart movements on the bob (through the shaft) begins 
to predominate.  This can be seen by imagining the 
bob to have toppled over by 90 degrees so the shaft 
is parallel to the x axis.  Now when the cart moves 
leftward, the bob can only move left (instead of right).  
Somewhere between the vertical and this 90 degree 
orientation, there is a transition from one sign to the 
opposite sign of the effect of moving the cart.  Since 
the direct effect is opposite to the gravitational effect, 
there comes a point where the negative feedback in 
our control systems turns into positive—and very 
much larger—feedback effects.  At that point the 
program goes into runaway and halts when the vari-
ables head toward infi nite values.

In a truly complete model, one that works as 
much like a human system as possible, runaway 
would not happen.  Instead, a higher-level system 
would turn off the balancing control systems before 
they get into a runaway state, and substitute another 
system, perhaps one that swings the bob in large loops 
back and forth until it comes to a stop for a moment 
somewhere within the effective control range.  Then 
balancing could be resumed.  Real human beings 
behave just like this.  If a disturbance moves the bob 
out of the critical range, the human being will start 
into a runaway process, but before it can go very far, 
a completely different mode of behavior will take the 
place of balancing.
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Figure 2.  The cart moves left and right as required to make the bob follow a reference position set by user.   
Screen shot from Bruce Abbott’s Delphi  version of original program, shown immediately after a move of the 
target position (red) from the left margin  to the right.

Since this higher-level control is not part of this 
model, runaway is avoided here simply by limiting the 
output of the position control system, which limits 
the speed reference signal.

PERFORMANCE OF THE SIMULATION

When the program starts, the bob is initialized to a 
position 0.1 radian off the vertical, with the position 
reference signal set to zero and the cart at the zero of 
the x-axis.  The computer mouse controls the position 
reference signal.

The cart immediately moves under the bob and 
the bob quickly comes into balance.  It remains in 
balance indefi nitely with no visible movement.

Now the user can use the mouse to move the 
reference position to either side.  On the screen, 
the cart immediately moves opposite to the mouse 

movement, making the shaft and bob lean the way 
the mouse went.  The cart and bob accelerate to an 
almost constant velocity and coast for a while with 
the bob vertical again.  Then, as the bob approaches 
the new reference position, the cart speeds up and 
gets ahead of the bob.  The resulting backward lean 
decelerates the bob.  As the bob approaches the refer-
ence position, the backward lean decreases, becoming 
zero just as the bob becomes stationary at (or very 
close to) the new reference position.  This is shown 
in Figure 2.

This behavior looks complex and programmed, 
but it is in fact neither.  The complex motions are 
a natural result of the behavior of the organization 
shown in the lower half of Fig.  1.  There are no 
tests for different logical conditions, and there are 
no logical rules in effect (as in “fuzzy logic” control-
lers).  This is a set of 5 very simple continuous analog 
controllers.
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CONCLUSIONS

There were two primary objectives in constructing 
this stimulation.  One was to test, in a preliminary 
way, the idea of simulating mechanical systems in 
terms of fundamental physical laws, not employing 
“rigid rods.”  The other objective was to test the idea 
that complex control systems could be analyzed into 
hierarchical levels, with the lowest levels controlling 
the highest derivatives of the variables to be con-
trolled.  The results are encouraging in both cases.

In this preliminary effort, no attempt was made 
to fi nd optimum parameter settings to get the great-
est stability and speed possible.  In fact this could be 
claimed as another positive result, for the idea was 
to see if there could be an approach to simulating 
control processes that bypasses all the complexities so 
often found in textbooks on this subject.  The author, 
however, would be embarrassed to make that claim, 
since the truth is that complex methods of control 
system analysis are mostly beyond his abilities.

It may be, however, all such disclaimers aside, 
that the methods outlined here could be developed 
into a much more systematic and useful approach to 
both simulation and control.  Simulating physical 
systems in the usual way gets extremely complex and 
requires advanced mathematical abilities; the same 
applies to simulating and analyzing control systems.  
Any method that promises to simplify and streamline 
such analyses, while of little interest to mathematical 
geniuses, might well be worth developing for the sake 
of the rest of us.  Anyone interested is warmly encour-
aged to help carry this exploration further.
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Inverted Pendulum

This program is a demonstration of hierarchical control, an application to a classical control problem.   
A pendulum is mounted on a cart so it can swing through 360 degrees.  A motor on the cart can accelerate 
it left and right, and sensors are provided for linear acceleration, velocity, and position of the cart, as well 
as angular acceleration, velocity, and position of the pendulum.  A fi ve-level hierarchical control system 
controls bob position relative to a reference position the user can set with the mouse, as follows:

1. The bob’s angular position error is corrected by varying the angular velocity reference signal;
2. The bob’s angular velocity error is corrected by varying the angular acceleration reference signal;
3. The bob’s angular acceleration error is corrected by varying the cart’s position reference signal 

 (with gravity providing the acceleration);
4. The cart’s position error is corrected by varying the cart’s linear velocity reference signal;
5. The cart’s velocity error is corrected by varying the cart’s linear acceleration reference signal;
6. The cart’s linear acceleration is varied by varying the motor torque.

         Bill Powers

Note by Richard Kennaway:

Item 6 in this list is not a control loop: the demanded acceleration for the cart is the force applied to the cart 
(divided by its mass).  At least it is when the pendulum is vertical, and close to that when it’s nearly vertical.

Providing a reasonable, effi cient explanation for the inverted pendulum is very important to 
any effort to explain how standing and walking animals can keep their balance so very well.  
Thus the inverted pendulum it is of great signifi cance to the design of robots as well.

The discussion of the Inverted Pendulum on page two, based on Bill Powers’s program, is extracted from 
A Simple and Robust Hierarchical Control System For a Walking Robot, courtesy of J.R. Kennaway (2004). 
(Temporarily available at http://www.cmp.uea.ac.uk/~jrk/temp/rk-c2004.pdf).  

For Richard Kennaway’s work relating to PCT, see http://www.cmp.uea.ac.uk/~jrk/PCT.

There is a discrepancy between the number of levels in the hierarchy described by Bill Powers above and 
implemented in the program (fi ve), and the number portrayed by Richard Kennaway in his analysis on 
page nine (four).  Here is what Richard wrote in e-mails to Dag Forssell on April 16 and 23, 2004:

The place I took out one of Bill’s controllers is in the text where I write “So we can set the acceleration 
by setting o.”  Bill’s original version used an extra controller to control the acceleration by setting o 
(to the error in acceleration), but the system works about as well either way.  Item 3 is the level I took 
out, by observing that [when the pendulum is nearly vertical], the acceleration of the bob is close to 
being proportional to the offset between cart and bob.
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Figure 2: Control hierarchy for inverted pendulum

EXAMPLE: THE INVERTED PENDULUM

We shall introduce this approach by way of a simple 
example, designed by Powers.  Consider the inverted 
pendulum shown in Figure 1. We assume that the 
cart travels on a frictionless track, the rigid pendu-
lum rod swivels freely at its base, and that there is an 
actuator which applies any specifi ed horizontal force 
to the cart.  To move the pendulum bob to a speci-
fi ed horizontal position by means of this actuator is 
a complicated task.  Nevertheless, it can be achieved 
by breaking the matter down into simpler tasks, as 
follows. 

If we had an actuator that could set the bob im-
mediately to any desired position, no control system 
would be necessary.  We don’t have such an actuator; 
but if we had one which could set the pendulum’s 
horizontal velocity, we could use this to control the 
position: set the velocity equal to k0(rb − b) for some 
constant k0, where rb is the demanded position 
and b is the current position.  We don’t have such a 
velocity actuator, but if we had an actuator that set 
the bob’s acceleration, we could control the velocity 
b to approach a reference value rb by applying an 
acceleration k1(rb − b).  The acceleration is pro-
portional to the pendulum angle, which is propor-
tional to o = b − c, where c is the position of the cart.  
So we can set the acceleration by setting o.  We cannot 
set o directly, but we could control o if we could set 
the cart’s velocity, by setting c = k2(rc − c), where rc is 
the reference cart position.  We cannot set c directly, 
but we could control it if we could set the cart’s 
acceleration: c = k3(rc − c), where rc is the demanded 
cart velocity.  Finally, we can set the cart’s acceleration 
by applying a force to the cart, which by hypothesis 
we are able to do. 
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© 2004 Richard Kennaway  

The resulting arrangement of four proportional 
controllers is shown in Figure 2.  For suitably chosen 
values of the gain parameters, it is found to work very 
stably and robustly (although it is not able to swing 
the pendulum up from the straight down position).  
Although the construction has been described above 
on the assumption of linearity, which fails when the 
pendulum angle departs too far from the vertical, 
the non-linearities are controlled against in the same 
way as external disturbances.  The physical simulation 
(from which Figure 1 is a screen shot) uses the true 
differential equations, valid for all pendulum angles.

Figure 1: An inverted pendulum 


