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Introduction

In 1992, Shadmehr and Arbib presented a math-
ematical analysis of muscle behavior in a single-joint 
system. The present authors, engaged in constructing 
a simulation of limb control based on biomechani-
cal control systems and physical dynamics, used this 
article as a basis for making a previous model of arm 
control (Powers 1999) more realistic. It soon became 
evident, however, that the accepted muscle model 
(Fig. 1) needed some modifications to account for  
basic observations.

One problem with several analyses using the 
series/parallel spring model (McMahon 1984 p. 24, 
Shadmehr & Arbib 1992 p.471) is that they use 
linear springs, while the actual spring elements are 
known to show an exponential relationship between 
force and stretch. More important, the diagram 
can’t explain the results of quick-release experiments 
which are used to determine force-velocity curves. 
In a quick-release experiment, a muscle is excited to 
produce tension while held at a fixed length equal to 
its resting length in the body, then is released to con-
tract while a smaller constant force acts to stretch it. 
Assume that the springs in Fig. 1 start at their relaxed 
lengths. Activating the force generator will stretch the 
upper spring and shorten the lower one. Releasing 
the upper end of the muscle can then only make the 
parallel spring shorter still. McMahon says specifically 
that the parallel spring exerts no force in compression 
(op. cit., p. 17). With a position-independent upward 
force (Ft) less than the downward force (the condition 
of the quick-release experiment), the muscle can only 
shorten to its lower limit – it will not shorten to a new 
intermediate length, as is observed to happen.

A new muscle model

In McMahon’s worked problem 2,  the lower (paral-
lel) spring element is actually required to work in 
compression, the only way the contraction could be 
limited after release if the forces are both independent 
of position. This oversight makes the analysis of the 
quick-release experiment questionable.

This is a paper that proposes a new muscle model to replace the one that has been used in the literature for 
many years.  The old model uses linear spring elements and a signal-driven force generator with the force being 
independent of muscle length.  This model fails to reproduce the basic observations of muscle behavior such as 
the Hill curve found in quick-release experiments.  The new model makes the length of contractile elements 
depend (negatively) on the driving signal and also uses springs with the exponential force-length characteristic 
that is observed for passive stretch in most real muscles.  All the main observations of muscle characteristics 
are reproduced by this model with one set of parameters.  A C-language function is provided that can be used 
in computational models.

Figure 1:  A widely-used muscle model, redrawn from 
McMahon (1984) Fig. 1.11.  According to McMahon, 
the two springs, representing the lengths of muscle elastic 
components, are in their fully relaxed states in the body 
when no driving signal is present.  This means that the 
lower spring does nothing at all when the muscle contracts 
unless it operates in compression. 
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Shadmehr and Arbib (1992) used a linear muscle 
model, yet were able to arrive at the required exponen-
tial muscle behavior by approximating the twitch re-
sponse with the difference between two exponentials. 
Integrating this response led to an exponential form 
for the relationship between driving signal frequency 
and steady-state force generated by a muscle (their 
fig. 9). That nonlinear relationship rather than non-
linear elastic elements was the source of the ultimate 
exponential force-stretch law that was derived in their 
paper. Their model also employed the parallel spring 
in compression.

In this paper we propose a different muscle model 
that will fit the quick-release behavior and other 
observed phenomena while still using the observed 
exponential-law elastic properties of muscle and con-
nective tissue. 

We assume that all the springs have an exponential 
dependence of force on stretch (McMahon 1984, p 8).

In our revision of the muscle model, we assume a 
representative crossbridge, one end of which is moved 
by an amount that depends on the composite neural 
signal reaching the muscle. At low rates of excitation 
only a small fraction of the attachments is moved at 
a given instant, or alternatively, the end of the repre-
sentative crossbridge moves by only a small amount. 
As the signal level increases, the average movement 
reaches an asymptote when all the attachments have 
moved as much as possible. Since we do not know 
the details, we assume a simple negative-exponential 
relationship. The contractile part is shown as x1 in 
Fig. 2. The length x1 is expressed by 

x1 = kc*exp(-s/ks),

where kc is the unshortened length, and ks defines 
the signal level at which 1/e or 37% of the ultimate 
shortening occurs. Programming, rather than alge-
braic, notation is used. 

Figure 2: New muscle model using a true contractile component  
shown as a schematic half-sarcomere rather than a force generator  
in parallel with a spring. Springs S1 and S2 are identical and 
nonlinear, imposing an exponential dependency of force on length.  
The dashpot is nonlinear. Contraction shortens the length x1. 

A New Muscle Model

The basic unit of organization of a muscle 
fiber is a sarcomere, a cylindrical structure 
with thin filaments extending inward from 
the ends, interleaving with thick filaments 
suspended in the center. When neural signals 
activate the sarcomere, crossbridges form be-
tween the thick and thin filaments, attaching 
in an extended state and then contracting.  
The action has been likened to the move-
ments of an inchworm.  

During continuous neural excitation, 
crossbridges are continually being formed and 
releasing, pulling one end of the crossbridge 
along the thin filament and stretching its elas-
tic component on each cycle. On the average, 
the population of all the crossbridge attach-
ments is moved by an average amount that 
depends on the rate at which neural impulses 
are arriving throughout the whole muscle.  
The average movement of the crossbridge 
attachment creates an average stretch in the 
crossbridge itself, producing an internal con-
tractile force. The resulting force and contrac-
tion stretches connective tissue and tendons 
in series with the sarcomeres, producing the 
force the muscle exerts externally. This gen-
eral picture was obtained from a review in 
McMahon (op. cit.), particularly chapters 3 
and 4. We have left out some details which 
may or may not prove important.
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The dashpot must be nonlinear to make the 
muscle’s force-velocity curve fit the Hill curve shown 
in McMahon (1984, Fig. 1.10, p. 15). The dashpot 
constant k is an empirical function of the external 
force f2. The expression kd/(1 + kh*f2) adjusts the 
curvature of the force-velocity curve. If kh is set to zero 
the Hill curve becomes linear. The value of kh can be 
chosen for best fit to the curve that Hill represented 
as an hyperbola.

The force-velocity curve is shown later (Fig. 6) and 
is discussed along with the quick-release experiment 
in which it is measured.

Performance of the model

In this section, the simulated muscle is used in a series 
of “experiments” like those done with real muscles. 
The results are compared with either data or other 
models. Throughout the rest of the paper, the model 
parameters are set as follows: kd = 0.005, kh = 0.0023, 
kf = 2.67, kc = 6.0, ks = 9.0, and dt = 0.0001 sec.

Fig. 3 shows the dynamic response of the model 
to a sudden driving input under isometric conditions 
(x3 held constant). 

This performance is reasonably close to that of the 
Shadmehr and Arbib model shown in Fig. 4.

This exponential form has nothing to do with the 
nonlinear springs. It is a way of creating a contrac-
tion function that starts out linear at low values of the 
signal s, and then approaches an asymptote (of zero 
length) as the muscle approaches complete tetanus, 
where as many of the contractile sarcomeres as pos-
sible are simultaneously in the shortened state. 

Forces due to  springs S1 and S2 are calculated 
from the lengths of the springs, as

f1 = exp(kf*(x2 – x1)) – 1.0
f2 = exp(kf*(x3 – x2)) – 1.0

following the form used by McMahon (1984, p. 8) 
and Feldman (1966).  It is assumed (from Shadmehr 
and Arbib’s Fig. 3A – C) that the contractile unit for 
the biceps shortens by at most 6 cm, stretching each 
spring in the steady state by 3 cm. We assume that the 
resting lengths of springs S1 and S2 are both 12 cm, 
leading to a maximum total relaxed muscle length of 
30 cm, about right for the human biceps.

Program 1, below, is the simulation of the muscle 
proper. At a  given instant, the length of the dashpot 
x2 is fixed, providing a beginning point for calculat-
ing the forces in the two springs. Once the spring 
forces f1 and f2 have been calculated, they are used 
to determine the new length of the dashpot, x2, for 
the next iteration: x2 changes at a rate that depends 
on the net force f2 – f1 applied to the dashpot.

Program 1:  C program segment containing the muscle 
model. The function receives the magnitude (frequency) 
of the driving signal s and returns the force exerted by 
the muscle between its attachments. Named constants 
and undeclared variables are defined outside this func-
tion.  Limits on elongation prevent very large forces from  
appearing as startup transients.

double muscle(double s)
{
double x1, k,el;
 x1 = kc*exp(-s/ks));  // contractile segment
 if(x2 < x1) x2 = x1;  // x2 must be between
 if(x2 > x3) x2 = x3;  // x1 and x3
 el = x2 – x1;         // elongation of spring 1
 if(el > 4.0) el = 4.0;// limit elongation to 4 cm
 f1 = exp(kf*el) – 1.0;// compute internal force
 el = x3 – x2;         // elongation of spring 2
 if(el > 4.0) el = 4.0;// limit elongation to 4 cm
 f2 = exp(kf*el) – 1.0;// compute external force
 k = kd/(1.0 + kh*f2); // nonlinear dashpot coeff
 x2 += k*(f2 - f1)*dt; // net force moves dashpot 
 return f2;            // returns external force
}

Figure 3:  Dynamic  behavior of model under isometric 
conditions. Curves show how tension develops with time 
given a step input rising instantly from 0 at time zero 
to a steady 20, 40, or 60 impulses per second.  Note: all 
performance curves in this paper are computed directly 
from the nonlinear muscle model and automatically 
plotted as the simulation runs
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A plot of steady-state force versus driving signal fre-
quency approximately matches the Shadmehr and 
Arbib model’s behavior: Fig. 5 is the present model’s 
response; Fig. 6 is that of the Shadmehr and Arbib 
model.

The basic observation that leads to giving muscles 
an exponential force-stretch property is that muscle 
stiffness grows linearly with the force being actively 
produced by the muscle (Hoffer and Andreassen 
1978).  When the new muscle model is set up in an 
“experiment” similar to the real one, the muscle is 
activated with a constant signal to produce a force, 
and then it is stretched by a small amount (here 1%) 

Figure 4.  Shadmehr and Arbib Fig. 9, showing 
step response for various input signal frequencies.  
Vertical = force,  horizontal = time.  Derived by summing 
successive twitches.

Figure 5:  Steady-state force versus average motor signal 
frequency.  Frequency scale is arbitrary.

Figure. 6: Shadmehr and Arbib plot of force (vertical, 
grams) versus motor signal frequency, impulses per sec.

to measure the change of force with respect to length.  
The change of force divided by the change in length 
is the stiffness. The result is the force-stiffness curve 
shown in Fig. 7. McMahon’s Fig. 1.5 in Fig. 8 shows 
data for rabbit heart muscle indicating the wide range 
and accuracy of this relationship.

Figure 7: Stiffness as a function of muscle force. 
The muscle is held at a length equal to its resting length. 
A signal is applied to create a tension.  Then the muscle 
is stretched by one percent and the tension is measured 
again.  Stiffness S is the change  in tension divided by the 
change in length.  The above plot is obtained for several 
hundred different steady-state  tensions.
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We turn now to the quick-release experiment. The 
new muscle model is supposed to explain the quick-
release experiment where the linear series-parallel 
spring model cannot. To reproduce this experiment, 
we start with the model muscle held at its resting 
length by fixed attachments. Then a specific amount 
of tension is generated by a signal that sets the con-
tractile element x1 to a length less than its maximum 
length. Finally, the end of the muscle is released and 
a constant force (less than the initial force) is applied 
to the right-hand spring, to reproduce the conditions 
shown in McMahon’s Fig. 1.8.

The results are shown in Fig. 9.  To make them 
look like McMahon’s Fig. 1.8 shown in Fig. 10, it 
was necessary to subtract out the resting lengths of 
the springs, making the changes more evident (the 
actual length changes are at most 20% of the total 
muscle length). The new model shows the correct 
general form of muscle response in the quick-release 
experiment. 

The quick-release experiment was used by Hill to 
determine the force-velocity relationship (represented  
by an hyperbolic equation as shown in McMahon’s 
Fig. 1.10). Simulating the experiment,  we vary the 
post-release force in repeated runs of the experiment 
and plot the initial post-release slope (shortening 
velocity) against the post-release force, normalizing 
both axes to the initial values. The result is shown 
in Fig. 11.

Figure 9. Quick-release experiment.  An initial force of 
about 2500 N is generated by a signal that contracts the 
muscle isometrically.  At t = 0.4 seconds, the muscle is 
released and a constant stretching force of 10 N is applied 
(note that these numbers are appropriate for a whole 
muscle like the biceps; they would be scaled down greatly 
for a single fiber).  The muscle length changes initially by 
about 2 cm as the spring S2 instantly shortens to a new 
(constant) length.  Then the muscle contracts further as 
the spring S1 shortens to a new length set by the length 
of the contractile element and the new applied force.      
The transition is slowed by the dashpot. 

Figure 8:  McMahon’s Fig. 1.5. Stiffness as a function 
of muscle force in the papillary muscle of rabbit heart. 
Vertical: stiffness; horizontal: force.

Figure 10. Quick-release experimental conditions and 
results.  Excerpted from McMahon Fig. 1.8.
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Compare Fig. 11 with Fig 12, which is Hill’s force- (or 
tension-) velocity curve. Even though the two curves 
are derived from very different assumptions, they are 
nearly identical. This could mean that the new model 
would fit the original data just as well as would the 
hyperbolic curve.

Summary

Using a new muscle model in which there is a con-
tractile element, two nonlinear series springs, and a 
nonlinear dashpot to simulate internal viscous fric-
tion, we have simulated the open-loop response to be 
expected from this model, and then tested the model 
in simulations of various experiments that are found 
in the literature. The new muscle model appears to 
have the right characteristics for use in modeling of  
motor control behavior.
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Note: Computer program notation is used in this 
paper. Multiplication is explicitly denoted by the 
asterisk. This permits multiple-character symbols to 
be used, as in “ks,” which does not mean k times s 
(k*s) but is the unitary name of a constant. 

Figure 11. Force-velocity curve determined from many  
simulated quick-release experiments.  With x3 held at 
the resting length, the driving signal sent to the muscle 
is adjusted for an initial force T0 of 2500 N.  Then the 
length constraint is released and a post-release force T 
(position-independent) is applied to the free end of the 
muscle (see McMahon, Fig. 1.8).  The above plot shows 
the result as the post-release force is held constant at val-
ues from T0 down to zero during repeated experiments. 
A single constant adjusts the linearity (see Program 1 
above).

Figure 12: Hill’s force-velocity curve plotted from Hill’s 
hyperbolic equation by McMahon.  Excerpted from 
McMahon’s Fig. 1.10 to eliminate regions outside the 
range of interest (such as the force developed by hyperex-
tensions of the muscle).


