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BYTE 2:  July 1979

The Nature of Robots
Part 2: Simulated control SyStem

In part 2 of The Nature of Robots, William 
T Powers presents a BASIC simulation of a 
control system. By experimenting with this 
simulator, the reader is able to work with the 
concepts of a closed loop control system.   
.                                        Page 134

This article appeared in BYTE magazine, volume 4, number 7, JULY 1979.  
Copyright returned to author. Article recreated by Dag Forssell in 2004.



�	

© 1979 William T. Powers – File byte_july_1979.pdf    from www.livingcontrolsystems.com.

The Nature of Robots
Part 2: Simulated control SyStem

n part 1, we went through a chain of reasoning 
that ended with the conclusion that the behavior 
of an organism is not what it seems.  Behavior 

appears to be at the end of a cause and effect chain that 
starts with the inputs to a nervous system, but that 
chain is subject to disturbances that can occur after	
the output of the nervous system.  Nevertheless, the 
behavior at the end of this chain is stable and repeat-
able, while events closer to the organism become less 
predictable as we get nearer to the neural signals at 
the output of the nervous system.  By analyzing an 
example in which a car is maintained in the center of 
its lane, we saw that this measure of behavior belongs 
at both the cause and effect ends of the chain, and that 
if this variable is shown only once in the diagram, a 
closed loop results.

We are going to look in more detail at the behav-
ing system in this closed loop, to see how it might be 
organized to produce the results seen.  We will start 
using a simulator written in BASIC which allows the 
user to vary many parameters of the control system 
to see the effects on its actions.  Human behavior will 
not be mentioned much in this installment; there are 
many fundamentals to cover before we can get back 
to the main purpose of this series.  The object here is 
to retrain the intuition so that the closed loop way of 
seeing behavior becomes as natural as the old straight 
through cause and effect way.

I note on north Star BaSic

The method of accessing strings in North Star 
BASIC is different from that of Microsoft and 
other BASICs.  Translate as follows:

A$(1,n) becomes LEFT$(A$,n)
A$(n) becomes RIGHT$(A$,n)
A$(m,n) becomes MID$(A$,m,n)

Figure,	table,	and	listing	numbering		
continued	from	part	�.

organization of a control System

The simulator (listing 2) is set up to demonstrate the 
properties of a standard sort of control system organi-
zation.  We will first look at that organization, then at 
the simulator itself, and finally at some details of the 
operation of the control system.  You can do much 
more experimenting than we will discuss here.
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Listing 2: A	control	system	simulator		
		written	in	North	Star	BASIC.

1 PRINT "PROGRAM TWO: SIMULATION OF CONTROL SYSTEM  
BEHAVIOR"

2 PRINT
3 PRINT "AFTER PROMPT (COLON), YOU MAY TYPE"
4 PRINT "’PLOT XXXXXX’, WHERE XXXXXX MEANS"
5 PRINT "ANY ONE OR MORE CHARACTERS FROM THE"
6 PRINT "SET P,E,R,I,O,D, IN ANY SEQUENCE."
7 PRINT
8 PRINT "YOU MAY ALSO SET PARAMETERS BY TYPING IN"
9 PRINT "THE PARAMETER SYMBOL IMMEDIATELY FOLLOWED"
10 PRINT "BY AN EQUAL SIGN AND THE VALUE (NO SPACES)."
11 PRINT
12 PRINT "PARAMETERS ARE L, K1, K2, S1, S2, O, P, R, AND D"
13 PRINT "DEFAULT VALUES 16, 1, 2, 1, 1, 0, 0, 0, AND 15"
14 PRINT
15 PRINT "TO RUN, TYPE ‘.’ (INITIALIZE), OR ‘/’ (DON’T INIT)."
16 PRINT
17 K1 = 1
18 K2 = 2
19 S1 = 1
20 S2 = 1
21 P0 = 0
22 O0 = 0
23 R0 = 0
24 D0 = 15
25 V(4) = 1
26 V(5) = 1
27 V(6) = 1
28 INPUT "DISPLAY WIDTH: ",W
29 W = W – 2
30 C = W/2 \ REM CENTER OF DISPLAY
31 DIM Z$(W),M$(W),A$120),B$(6),K(6),U(6),E$(72)
32 B$ = "PERIOD"
33 L1 = 15
34 FOR J = 1 TO W
35 Z$(J,J) = " "
36 NEXT J \ REM CREATE BLANK FILE
37 DEF FNI(X)\ REM INPUT FUNCTION
38 P = P + S1*(K1*X–P)
39 RETURN P
40 FNEND
41 DEF FNO(X) \ REM OUTPUT FUNCTION
42 O = O + S2*(K2*E–O)
43 RETURN 0
44 FNEND
45 DEF FNF(X) = 0.5*X \ REM FEEDBACK FUNCTION
46 DEF FND(X) = 0.8*X \ REM DISTURBANCE FUNCTION
47 REM * *
48 REM * * COMMANDS FOR SETTING PARAMETERS
49 GOTO 51
50 A$ = " " \ IF El > LEN(E$) THEN 51 ELSE 53
51 INPUT ":",E$ \A$ = " "\E1 = 1
52 IF LEN(E$)< > 0 THEN 53 \ PRINT \ GOTO 51
53 E1 $ = E$(E1,E1) \ E1 = E1 + 1
54 IF El $ = "," THEN 57 ELSE IF El >LEN(E$) THEN 56
55 A$ = A$ + E1 $ \ GOTO 53
56 A$ = A$ + E1 $
57 IF A$ = "." THEN 95
58 IF A$ = "/" THEN 99
59 IF A$ < >"?" THEN 62
60 PRINT \ PRINT%7F3,"K1 = ",K1," K2 = ",K2," S1 = ",S1," S2 = ", S2
61 GOTO 51
62 IF LEN(A$)< 5 THEN 72
63 IF A$(1,5)< >"PLOT" THEN 72

64 A$ = A$(6)
65 FOR J = 1 TO 6 \ REM TAG VARIABLES TO
66 V(J) = 0 \ REM BE PLOTTED.
67 FOR K = 1 TO LEN(A$)
68 IF A$(K,K) = B$(J,J) THEN V(J) = 1
69 NEXT K
70 NEXT J
71 GOTO 50
72 IF LEN(A$)< 3 THEN 91
73 IF A$(1,3)< >"K1 = " THEN 75
74 K1 = VAL(A$(4)) \ GOTO 50
75 IF A$(1,3)< >"K2 = " THEN 77
76 K2 = VAL(A$(4)) \ GOTO 50
77 IF A$(1,3)< >"S1 = " THEN 79
78 S1 = VAL(A$(4)) \ GOTO 50
79 IF A$(1,3)< >"S2 = " THEN 81
80 S2 = VAL(A$(4)) \ GOTO 50
81 IF A$(1,2)< >"0 = " THEN 83
82 O0 = VAL(A$(3)) \ GOTO 50
83 IF A$(1,2)< >"P = " THEN 85
84 P0 = VAL(A$(3))\ GOTO 50
85 IF A$(1,2)< >"R = " THEN 87
86 R0 = VAL(A$(3))\ GOTO 50
87 IF A$(1,2)< >"D = " THEN 89
88 D0 = VAL(A$(3))\ GOTO 50
89 IF A$(1,2)< >"L = " THEN 91
90 L1 = VAL(A$(3))\ GOTO 50
91 PRINT "???", \ GOTO 50
92 REM **
93 REM ** SIMULATION AND PLOTTING LOOP
94 REM **
95 P = P0 \ REM ENTRY WITH INITIALIZATION
96 O = 00\D = D0\R = R0
97 I = FNF(O) + FND(D)
98 E = R – P \ GOSUB 109 \ REM PLOT INIT. CONDITIONS
99 D = D0 \ REM ENTRY, NO INITIALIZATION
100 R = R0
101 FOR L = 1 TO L1 \ REM CONTROL LOOP SIMULATION
102 I = FNF(O) + FND(D)
103 P = FNI(I)
104 E = R–P
105 O = FNO(E)
106 GOSUB 109 \ REM CALL PLOTTING SUBROUTINE
107 NEXT L
108 GOTO 50
109 REM * "
110 REM ** PLOTTING SUBROUTINE
111 REM
112 U(1) = P + C
113 U(2) = E + C
114 U(3) = R + C
115 U(4) = I + C
116 U(5) = 0 + C
117 U(6) = D + C
118 PRINT
119 M$ = Z$ \ REM CLEAR OUTPUT BUFFER
120 M $(C + I ,C + 1) = "." \ REM MARK SCREEN CENTER
121 FOR J = 1 TO 6 \ REM LOAD BUFFER
122 U = INT(U(J) + .5) + 1
123 IF U< 1 THEN U = 1
124 IF U> W THEN U = W
125 IF V(J) = 1 THEN M$(U,U) = B$(J,J)
126 NEXT J
127 PRINT M$, \ REM PRINT BUFFER
128 RETURN
999 END
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Figure 5 is a diagram of a typical control system.  
Almost every control system can be expressed in 
this form, although in the real system, functions 
that are shown here as separate are often combined 
into one physical entity.  The symbols for functions 
and variables are those which appear in the BASIC 
simulator.

The behaving system is entirely above the bound-
ary line.  All that is not the behaving system (or 
systems inside the organism at a higher level, not 
considered here) is called the environment	of the sys-
tem.  Variables inside the system will always be called 
signals,	and variables in the environment will always 
be called quantities.

In the environment we have three quantities 
mentioned in part 1.  The input	quantity is a physi-
cal variable that the system can sense.  The state of 
this quantity is the result of all influences acting on 
it (which in our limited universe means the influence 
from the system’s own output) and one representative 
disturbing	quantity	that can vary independently from 
what the system does.  The system’s output is repre-
sented by the output	quantity.		The input quantity is 
called I, the output quantity O, and the disturbing 
quantity D.

The output and disturbing quantities are sepa-
rated in space from the input quantity, and they 
influence the input quantity through properties of 
the intervening environment.  The connection that 
translates the state of the output quantity into an 
influence on the input quantity is called the feedback	
function,	symbolized in BASIC as FNF.  The function 
that translates the state of the disturbing quantity 
into another influence on the input quantity is the 
disturbing	function,	symbolized FND.  If the input 
quantity is associated with some physical object, then 
FNF and FND may both contain properties of that 
object (eg: its mass).  There are less redundant ways 
to handle this in special cases.

The meaning of the previous paragraph is summed 
up in line 102:1 = FNF(O) + FND(D).  The state of 
the input quantity is the sum of the influences from 
the output quantity and the disturbing quantity.  In 
the real world, both the output quantity and the dis-
turbing quantity may have many effects other than 
those on I, but those effects are irrelevant to the op-
eration of this system (perhaps not to the designer or 
user of the system, if it is artificial).  We have therefore 
considered everything about the environment that is 
of interest here.

Figure 5: The	system’s	output	quantity,	0,	influences	
the	 input	quantity,	 I,	 via	 the	 feedback	 function,	
FNF.		The	disturbing	quantity,	D,	influences	the	
input	quantity	via	the	disturbance	function	FND.		
Both	FNF	and	FND	represent	physical	links	in	the	
environment.	 	The	 state	 of	 the	 input	quantity	 is	
determined	by	the	sum	of	these	two	influences.
	 The	system’s	input	function,	FNI,	converts	the	
state	of	the	input	quantity	into	a	magnitude	of	the	
perceptual	signal	P.		P	is	compared	with	the	refer-
ence	 signal	R	 in	 the	 comparator	 function,	which	
emits	an	error	signal	E	=	R	–	P.		The	error	signal	is	
converted	into	a	magnitude	of	the	output	quantity	
via	the	output	function,	FNO.

Above the line we have the behaving system.  We 
cross the boundary at the input	function,	FNI.  This 
is the function which turns the state of an external 
quantity, I, into the magnitude of a perceptual	signal,	
P.  Both sensors and computing processes may be 
involved in a complex input function.  The outcome, 
however, is always the magnitude of a single signal, 
whatever it represents.  This signal can only increase or 
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anatomy of the Simulator

Let’s run through the simulator quickly before we 
start using it, to see how this control organization 
operates.

Lines 1 thru 16 are user instructions.  Lines 
17 thru 27 initialize the system in a way that will 
be used to illustrate a point.  Lines 28 thru 33 do 
more initializing, and ask for the width of your 
display.  Lines 34 thru 36 create a blank string in 
case your BASIC doesn’t set dimensioned strings 
initially to spaces.

Lines 37 thru 46 define the various functions of 
the control system. If your BASIC can’t do multi-
line functions, you can substitute subroutines here.  
The idea is to make it easy to try out different kinds 
of functions in the control system.

Lines 49 thru 91 comprise the interpreter, 
which accepts character strings and sets initial 
conditions and parameters before each run.  Vari-
ables are initialized and constants are set by typing 
a string of the form A=m or An=m (no spaces; 
terminated by a carriage return).  To set up the 
plotter, the statement is PLOT XXXXXX, where 
XXXXXX is one or more characters from the set 
P,E,R,I,O, and D, in any sequence.  The plotter 
comes up set to plot P, E, and R.  If you forget 
the last values of the parameters K1, K2, S1, and 
S2, type ? and they will be printed out.  We will 
eventually define them,

The control system itself is simulated from line 
95 to line 108.  Entering the simulator at line 95 
initializes the perceptual and output variables to 
values given to the interpreter.  Entering at line 99 
runs the simulation from the conditions left at the 
end of the last run.  This is taken care of by the two 
run commands in the interpreter: a dot (.) means 
run with initialization, and a slash (/) means run 
without initialization.  All commands require a 
carriage return termination.

The plotting subroutine goes from line 112 to 
line 128.  Its operation deserves a note, since it was 
arrived at after some more normal schemes were 
rejected for being too slow.  When the interpreter 
is given a string of symbols to set up the plotting, 
a table is set up (V(j)) in which a 1 means plot and 
a 0 means don’t plot.  When the plotter is entered, 
it transfers all six variables to another table, U(j).  

The output buffer is then cleared, and a short 
loop scans the V table, picking up variables from 
the U table when V(j)=1, and putting the symbol 
into the output buffer in a position correspond-
ing to the value of the variable.  Then the output 
buffer is printed out.  This eliminates sorting the 
variables by size or printing the line as many times 
as there are variables.  This method nicely cures 
the fundamental “rheumatism” of BASIC, as it 
is able to plot about two lines per second on my 
Polymorphics VTI display.

When two variables fall on the same spot, the 
variable that actually appears is the latest one in the 
series PERIOD.  Thus far it has always been easy to 
figure out where a missing variable is hidden.

Once we have a set of variables connecting 
functions together, and an overall arrangement, 
we can treat the system by assembling it piece by 
piece.  Let’s look at the pieces we have, represented 
by the four statements in listing 2 from line 102 
to 105:

102   I = FNF(O) + FND(D)
103   P = FNI(I)
104   E =  R – P
105   O = FNO(E)
Looking at figure 5, we can see that these four state-
ments lead us clockwise around the closed loop.  I is 
the result of combining the outputs of the feedback 
and disturbance functions.  it becomes the input 
to the input function, producing a value of the 
perceptual signal P.  P is one of the inputs to the 
comparator, which produces the error signal E.

E is the input to the output function that pro-
duces O, the output quantity.  The output quantity 
is the input to the feedback function, which leads 
us back to the start.

It might seem that all we have to do now is to 
supply some specific forms for the functions, and 
turn the system on to see what it will do.  In a sense, 
this is right.  If this were an analogue computation, 
we might even get a correct idea of how the system 
works.  However, it is unlikely that anyone who 
hasn’t done this before would plug in the right func-
tions to make a digital computer give us anything 
more than a fairy tale.  It is so important to under-
stand this point that l have written the simulator to 
come up initialized in order to illustrate it. 
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using the Simulator

The simulator is run from the keyboard, using commands that tell it which variables 
to plot and what values of variables and parameters to start with.  The instructions 
can be given one at a time, terminated by carriage returns, or they can be given in a 
continuous string with commands separated by commas.  The latter is useful for alter-
ing parameters in the middle of a plot in order to see their effects.

The only time a space is permitted in a command or string of commands is when 
it is separating the word PLOT from the string of variable symbols to be plotted.

In order to tell the simulator what variables to plot, type: 

PLOT XXXXXX
where XXXXXX means a string of 1 to 6 symbols from the set PERIOD.  The order 
of the symbols makes no difference.  When two or more symbols land on the same 
plot, the one that you see is the latest in the series PERIOD, regardless of the order in 
which they were given.

To start a plotting run, type a period followed by a carriage return or comma if 
initialization is to occur first, and type a slash (/) if the run is to start from the condi-
tions at the end of the previous run.  Initializing creates one extra line of plot showing 
the initial conditions.

The parameters and variables that can be set are as follows:

L Number of lines to be plotted in any plotting run.
K1 Steady state proportionality factor of the input function.
S1 Slowing factor for the input function; positive and between 0 and 1.
K2 Steady state proportionality factor of the output function.
S2 Slowing factor for the output function; positive and between 0 and 1.
O Initial value of output quantity.
P Initial value of perceptual signal.
R Setting of reference signal.
D Magnitude of disturbing quantity.

Examples: (colon is prompt from computer.  Always terminate a string with a 
       carriage return).

Set L to 16 :L=16
Set D to 0, run without initializing :D=O,/ or
 :D=O 
 :/

Set D to 0, plot 2 points
after initializing, set D to  :PLOT PER,D=0,L=2,.,D=10, L=13,/ 
10, plot 13 points from
previous conditions.  Plot P, E, and R

The program is written so that after a plot is completely done (a complete string has 
been interpreted), the prompt character appears to the right without a carriage return.  
That allows a 16 point plot to be shown on a 16 line video display screen without the 
final carriage return bumping the first line off the screen.  If you want your next string 
to start at the left, just hit a carriage return.

To find out the values of K1, K2, S1, and S2 when you forget them, type “?” fol-
lowed by carriage return and they will be printed.
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decrease; we will always work with one-dimensional 
control systems, treating multi-dimensional control 
phenomena by using multiple control systems.  The 
perceptual signal is the system’s internal representation 
of the external world—its only such representation.

Line 103 expresses the definition of the input 
function and the way it relates the input quantity 
and perceptual signal: P = FNI(I).

Inside the system is another signal, the reference	
signal,	R.  In living systems, this signal is generated 
elsewhere in the organism; it is not accessible from 
outside.  The reference signal, along with the percep-
tual signal, enters a function called the comparator,	
which subtracts one signal from the other and emits 
an error	signal,	E, representing the signed difference 
of magnitudes.  It does not matter which signal is 
subtracted from which, but for uniformity we will 
always treat the reference signal as the positive input 
and the perceptual signal as the one subtracted from 
it.  Thus, a positive error signal always means that the 
reference signal is larger than the perceptual signal.  
This function does not have to be generalized, as non-
linearities and amplification can always be absorbed 
into one of the other functions.

Therefore line 104 represents the comparator 
without using a function; it is the comparator 
function itself: E = R – P.

The error signal drives the output of the sys-
tem via the output	function,	FNO.  The output 
of the system, therefore, depends not on the 
input quantity or the perceptual signal alone, 
but on the difference between the perceptual 
signal and the reference signal.  The output 
function translates a signal inside the system 
into a quantity outside it, according to whatever 
rule is described by FNO.  If the error signal 
changes sign, the output quantity also changes; 
in other words, we assume that output functions 
have no constant term.  Any such constant term 
would have the same effect as a reference signal, 
creating an offset in the overall system response.  
Not every system can handle error signals and 
output quantities that go through zero and thus 
change sign, but the principles remain the same 
in the region where the system works.

Line 105 expresses the operation of the 
output function: O = FNO(E).  This closes 
the loop of cause and effect since the output 
quantity appears in line 102 where the input 
to the system is calculated.

If the system functions are properly designed for 
the properties of the system’s environment, this en-
tire closed loop will seek an equilibrium state.  Our 
simulator will let us look at time-varying effects, but 
for the most part we will be concerned with steady 
state relationships.

Once we have seen how time variations come into 
the picture, we will concentrate on variations that 
occur slowly enough that the system and its environ-
ment never get far from a steady state relationship.  
This is the whole trick in grasping how control sys-
tems work.  If you allow yourself to become embroiled 
in the interesting details of stabilization, or interested 
in the limits of performance in the presence of large 
and rapidly changing disturbances, you may learn a 
lot about one control system, but you will miss the 
organizational features that are obvious only when 
the system is not being subjected to unusual stresses.  
We will be concerned mainly with the normal	range	
of	 operation,	 the range within which this system 
can behave very nearly like an ideal control system.  
Once that mode of operation is understood, there is 
plenty of time to explore the limits of operation.  (See 
“Anatomy of the Simulator” text box).

Figure 6: The	initial	plot	generated	by	the	BASIC	simula-
tor.		Disturbance	is	set	to	��	units	and	the	reference	signal	is	
initialized	to	O.		The	system	is	in	a	state	of	oscillation.
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a Wrong approach

Let us start off by assuming that we have a simple 
linear system.  The input function is a multiplier of 
1, the comparator is already simple and linear, the 
output function is a multiplier of 2, the feedback 
function is a multiplier of 0.5, and the disturbance 
function is a multiplier of 0.8.  These choices are dic-
tated partly by the need to keep variables from falling 
on each other when we plot them.  The simulator 
initializes D to 15.

Our four system equations, with these values 
substituted, now look like this:

I = 0.5xO + .8xD=0.5xO + 12 (1)
P = I (2)
E = R–P (3)
O  = 2xE (4)

This system of equations is iterated during a simula-
tion of behavior.

The above is a pretty simple system of equations.  
So why can’t we just solve it algebraically and skip 
the rest? I suggest, in fact, that you do solve it (by 
successive substitutions).  Solve for the value of the 
perceptual signal in terms of R and D.  You’ll get 
P=I=(R – 0.8 x D)/2.

Ready for a shock? Your computer can’t come up 
with that solution! Let’s fire up the BASIC simulator, 
which is initialized according to equations 1 thru 4 
above, and plot I, D, and O.  Type RUN, and answer 
the question with a reply that tells the width of your 
display.  After the colon prompt appears, type in the 
following:

: .
I trust nobody had trouble with that.

The dot says “do a plotting run after initializing 
the variables.” A slash (/) would say “do the run from 
where the last run left off.” The result can be found 
in figure 6.

The disturbance is set to a steady  + 15 units, and 
the reference signal is initialized to 0.  According to 
the algebraic solution above, the input signal should 
be a steady 0.8 x 15/2, or 6 units, to the right of center 
(dots indicate center when nothing is there).  It is clear 
that something else happened.  The whole system is 
in a state of endless oscillation.  (When variables fall 
on top of each other in a plot, the visible one is the 
latest in the sequence PERIOD.)

Nature has a way of slapping your wrist when 
you forget something important.  Our wrist has just 

been slapped.  Naturally we do not get the same result 
that algebra gives: the algebraic solution comes from 
treating all of those relationships simultaneously.  Our 
computer program is treating them one	at	a	 time.  
The algebra says that if one variable changes, they 
all change.  The computer, being a purely sequential 
machine, thinks it can change one variable without 
changing the others.  If the physical system being 
modeled is of that nature—if it, too, is a sequential 
state machine—then the computer will produce a 
correct picture of behavior.  But, if the system being 
modeled works in terms of continuous variables, even	
in	part,	the computer will turn it into a sequential-state 
machine and analyze that	kind of system instead of the 
one we actually have.  That is what has happened here.  
We forgot to tell the computer that these variables can’t 
change as fast as the computer can compute.

a more accurate approach

In order to make this simulated system behave the 
way the algebra says it should, we have to slow down 
changes in one or more variables to take account of 
the fact that we are dealing with real, physical variables 
and not abstract numbers.  The simulator does this 
in the input and output functions, lines 37 thru 40 
(input) and 41 thru 44 (output).  We will be basically 
dealing with a linear system in which both the input 
and output functions are constants of proportionality.  
As you can see from listing 2, however, there’s a little 
more to it than that.

Consider line 42: O = O + S2* (K2*E – O).  The 
O on the left side is the new value of that quantity 
after this program step has been executed.  On the 
right side, O indicates the last value of the output 
quantity.  We recognize K2*E as a calculation of the 
output quantity as if it were simply proportional to 
the error signal, E.  The expression in parentheses, 
therefore, is the difference	between this calculated 
new value and the old value of O.  This is how much 
the output quantity would change if it could change 
instantly.

This calculated amount of change is multiplied by 
S2, a slowing	factor,	and the result is added to the old 
value of O.  We calculate the amount of change that 
an instantly reacting system would produce, but allow 
only a fraction S2 of it to occur on any one iteration.  
S2 is a positive number between zero and one.  We’ve 
put a low-pass filter into the output function, without 
affecting the steady	state	proportionality constant.
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The same thing is done for the input function.  
A slowing factor S1, between zero and one, acts to 
slow P down.  We need only one slowing factor to 
make this simulator behave realistically, but there is 
provision for two, so that you can explore the effect 
of having two if you wish.  In all the plots to follow, 
we’ll use a modest slowing factor of S1=0.5 in the 
input function, and essentially all of the required 
slowing in the output function.  Once you get the 
hang of this you can put slowing factors into any of 
the functions.

The simulator is initialized with S1 and S2 set to 1,  
which reduces O + S2x (K2xE – O) to O + K2xE – O 
or just K2xE (no slowing at all).  The same is done for 
the input function.  Let’s set them to other values and 
see what happens.  The values of S1 and S2 can be set 
by typing S1=n or S2=n and a carriage return:

	 :S1=0.5	
	 :S2=0.2
	 :	.	 		(run	with	initialization)

Suddenly we see nice, smooth relationships (figure 7).  
If you measure, you’ll see that the input signal, I, ends 
up just six units to the right; the same solution given 
by the algebraic approach.

Does this mean we can just use algebra to analyze 
a control system? Not at all.  We won’t delve into this, 
but the algebraic solutions are valid only if the differ-
ential equations which really describe the system have 
steady state solutions.  Then the algebraic solutions are 
the steady state solutions.  In our simulator, we see all 
the time variations that lead toward the steady state, 
and the algebra says nothing about these.  By put-
ting the slowing factors into our calculations we have 
caused this system to seek a steady state.  Therefore, 
it is the stability of the system that tells us we can use 
algebra, not the other way around.  Predicting stability 
can become a messy process.  We fiddle around with 
slowing factors until we get stability, which is more 
or less how Nature does it anyway.

Figure 7: The	slowing	factors	have	been	changed.		
S�	equals	0.�	and	S�	is	0.�.		We	now	have	a	much	
smoother	curve.

Figure 8: Adjustable	 parameters	 are	K�	 (input	
sensitivity),	S�	(input	slowing	factor),	K�	(output	
sensitivity),	and	S�	(output	slowing	factor).		P	and	
O	can	be	initialized	to	any	starting	value	(normally	
zero).		R	and	D	can	be	set,	and	remain	the	same	dur-
ing	a	run.		The	value	of	the	feedback	function	is	set	at	
0.�,	the	value	of	the	disturbance	function	at	0.�.

:S1=0.5 
:S2=0.2
:.
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We have now established the fact that using natu-
ral logic and following causes and effects around the 
closed loop as a sequence of events will lead to a wrong 
prediction of control system behavior.  This imme-
diately eliminates three-quarters of what biologists, 
psychologists, neurologists, and even cyberneticians 
have published about control theory and behavior.  
We are just beginning to see that one must view all the 
variables in a control system as changing together, not 
one at a time.  This is what I mean by retraining the 
intuition.  Cartesian concepts of cause and effect, and 
Newtonian physics, have trained us to think along 
directed lines.  What we need to do to understand 
control systems is to learn how to think in circles.

Properties of a control System

Figure 8 shows the control system and its environ-
ment as we will be dealing with it from now on.  Let’s 
start with some definitions:

Loop	Gain	means the product of all the steady 
state factors encountered in one trip around the 
closed loop, counting the comparator as a factor 
of –1.  In the initial setup, K1 was 1, K2 was 2, 
and the feedback function FNF was a multiplier 
of + 0.5, so the loop gain was –1.  The sign of the 
loop gain is the sign of the feedback; we have (and 
will continue to have) negative feedback.

Error	Sensitivity	is the factor K2, the steady state 
proportionality factor in the output function FNO.  
This number expresses how much output will be 
generated by a given amount of error signal.

Input	Sensitivity	is the factor K1, the steady state 
proportionality factor in the input function FNI.  
This number expresses how much perceptual 
signal will be generated by a given amount of 
input quantity.

We are going to perform a series of experiments with 
this control system in order to arrive at some use-
ful rules of thumb for thinking about how control 
systems work.  These rules are approximations, but 
by doing the experiments and seeing how good the 
approximations are, you will learn to think precisely 
about control phenomena, even when using approxi-
mate language.

We will set the system parameters to give a loop 
gain of –10.  As a way of summarizing where we are 
(refer to figure 8), the commands are given one at a 
time with annotations:

:K1=1 Input sensitivity = 1.
:K2=20 Error sensitivity = 20.
:S1=0.5 Input slowing factor = 0.5. 
:S2=0.07 Output slowing factor = 0.07.
:R=0 Reference signal = 0.
:O=0 Output initialization = 0.
:P=0 Perception initialization = 0.
:D=0 Disturbance = 0.

Type those commands, and the system is now set up 
in a “home base” condition.  Remembering that the 
comparator is equivalent to the factor of –1 and the 
feedback function is permanently set to be a factor 
of + 0.5, this combination of parameters gives a loop 
gain of 1 x (–1) x 20 x 0.5 = –10.

There are two fundamental rules of thumb: a 
control system keeps its perceptual signal matching 
its reference signal, and the output of a control sys-
tem cancels the effects of disturbances on the input 
quantity.  We will take these up in order.

 Rule 1: P = R
We’re looking at the system with no disturbance act-
ing (D=0).  If you want to be sure that everything 
stays at zero, type PLOT PERIOD .  followed by a 
carriage return.  You will see a row of Ds, D being the 
last symbol in the sequence PERIOD and hence the 
only one visible when all variables are at zero.

Now we will plot just the reference signal and the 
perceptual signal.  The first two points will be done 
with the initial conditions set up above.  The reference 
signal will then be set to + 25 units, and the plot will 
be continued for 13 more points.  Since this plot will 
commence with	initialization (the dot command), an 
extra line showing the initial conditions will be plotted 
first.  This makes a total of 16 lines, which will fit on 
most video displays.  Of course, if you’re doing this 
on paper you don’t have to worry about the number 
of points plotted.  Here is the command string:

:PLOT PR,L=2,.,R=25,L=13,/
Before discussing this, let’s do another run of 13 
points (figure 9), setting the reference signal to –25 
units and continuing without initialization (the slash 
command,/):

:R= –25,/
It is clear that the perceptual signal comes to a steady 
state quite close to the magnitude of the reference sig-
nal, whatever the reference signal may be.  The ques-
tion is, how critically does this tracking effect depend 
on the input sensitivity and error sensitivity?
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Let’s leave the reference signal at –25 and do 
a run in which the error sensitivity is doubled 
at the start, and the input sensitivity is doubled 
halfway through the run.  We will start from the 
previous conditions.  The loop gain will now be 
–40 instead of –10.

:K2=40,L=8,/,K1=2,/
To insure that everything is working cor-
rectly, let’s flip the reference signal to + 25 units  
(figure 10):

: L=16, R=25,/
While there is an effect on the way	the tracking 
takes place, the only effect of these rather drastic 
changes in input and error sensitivity is to make 
the tracking a little better.  What about a decrease	
in these parameters?

:L=16,K1=0.5,K2=10,/, R=25,/ 
(Loop gain now 2.5)

Figure 11 shows that the approximation P=R 
isn’t very accurate any more.  For loop gains 
smaller in magnitude than about 10 (negative), 
the approximation begins to lose accuracy.

You will notice that doubling the error sen-
sitivity, which doubles the amount of output 
generated by a given error, does not	double the 
amount of output that actually occurs.  Far from 
it.  When, for any reason, the loop gain goes 
up, the steady state error simply gets smaller, 
assuming that the system remains stable.  This 
fact does violence to the popular idea that the 
brain commands muscles to produce behavior.  
If that were the case, doubling the sensitivity of 
a muscle to the nerve signals reaching it ought to 
produce twice as much muscle tension.  Noth-
ing of the sort happens, unless you’ve lopped off 
the rest of the nervous system, particularly the 
feedback paths.

As long as the loop gain is sufficiently large 
and negative (–10 or more negative will do for 
a number), a stable control system will match 
its perceptual signal nearly to its reference signal, 
regardless of the reference setting.  We are ignor-
ing, of course, transient effects.

Figure 9: The	values	of	variables	are	listed	in	this	plot.		
The	disturbance	value	is	changed	from	+��	to	–��.

Figure 10: Change	of	gain	during	plot.		After	�th	
line,	gain	goes	from	�0	to	�0.		Reference	signal	is	
changed	to	check	operation.
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All of this was done with the disturbance set 
to zero.  Now let us set the reference signal to 
zero, and check the second fundamental rule of 
thumb.

 Rule 2: (delta O) = –(delta D)
This rule requires some interpretation.  It says, for 
the sake of brevity, that (with the reference signal 
constant) a change in the output quantity is equal 
and opposite to (the minus sign) a change in the 
disturbing quantity.  Generally, the input and 
disturbing quantities will affect the input quantity 
through different physical paths.  In our model, the 
output quantity acts through a multiplier of 0.5, 
and the disturbance through a multiplier of 0.8.  
The rule has to be interpreted to mean that the ef-
fects	of the changes on	the	input	quantity	are equal 
and opposite.  We will see this demonstrated.

We will now plot the output quantity, O, the 
disturbing quantity, D, and the input quantity, I 
(to make the above clear).  The reference signal 
could be left where it is, but to avoid confusion 
let’s set it to zero for this set of plots.  The loop 
gain is set to –10.

:PLOT OID, R=0,K1=1,K2=20,L=1,D=0, 
.,L=15, D=15,/ 

Let this plot run out, then: 
:D= –15,/

There is some lurching back and forth in fig-
ure 12, but in the steady state the behavior of 
the input quantity shows that the effect of the 
disturbance is essentially cancelled by the final 
effect of the output quantity.

If you did some measuring on the plot, you 
would find that the final value of the output 
quantity is very close to 8/5 of the value of the 
disturbing quantity.  This follows from three facts: 
the input quantity ends up nearly at zero; one 
unit of output has 0.5 unit of effect on the input 
quantity; one unit of disturbance has 0.8 unit 
of effect on the input quantity.  This is the kind 
of reasoning that helps in understanding how a 
control system works.

The primary observation about a control sys-
tem is always the existence of an input quantity 
which is stabilized against disturbances by varia-
tions in the output quantity.  If the input quantity 
is held essentially constant (in the steady state), 
then one can	deduce	the	relationship between	dis-
turbances and the system’s output quantity simply 

Figure 11: The	simulation	parameters	have	been	
changed	to	produce	a	gain	of	�.�.		Notice	that	the	
approximation	P=R	is	now	inaccurate.

Figure 12: The	reference	signal	has	been	set	to	zero.		
This	plot	shows	us	the	input	quantity,	the	output	
quantity	and	 the	disturbance	 signal	 for	D=	+��	
and	then	D=	–��.
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from observing the properties of the system’s environ-
ment.  On inspection, an external observer can see 
both the feedback function and the disturbance func-
tion, here multipliers of 0.5 and 0.8 respectively.  For 
any given disturbance, the effect on the input quantity 
for a constant output quantity can be calculated on 
purely physical grounds.  Since the input quantity 
remains undisturbed in the steady state, one can then 
look at the connection between the output quantity 
and the input quantity, and deduce how the output 
quantity must change to account for the fact that the 
input quantity doesn’t	change.

Thus, in order to predict how this system will react 
to any external disturbance, it is necessary only to 
know that the system is a control system and to look 
closely at its environment.  The kind and amount of 
reaction follow from the nature of the feedback and 
disturbance functions which are properties of the 
visible environment.

Most important, as far as the life sciences are 
concerned, the form and amount of reaction	do not	
depend on	any	property of	the control system; not 
enough to make any difference.  Therefore, when 

you apply a stimulus and see a response, you are 
using the organism as a complicated analogue 
computer in order to study the physics of the local 
environment.  This is not what the life sciences 
have thought they were doing.

All that remains to wrap up this section is to 
see the effects of disturbances when the reference 
signal is set to different values.  This will lead to 
the definition of a useful technical term: the refer-
ence	/eve/	of	the	input	quantity	(see figure 13):

:PLOT RIOD,D=0,R=0,L=1,.,R=12, 
L=15,/,D=15,/

If you have a 16 line video display this will scroll 
past you, losing the early parts, but no matter.  
The first event is that the reference signal is set 
to 12, and the input quantity moves essentially 
to + 12.  The output quantity goes to + 24 in 
order to accomplish this.  Then the disturbing 
quantity goes to + 15, which has the exact effect 
on the input quantity that + 24 units of output 
have.  As a result, the output quantity drops to 

zero—exactly	zero, if you look at the numbers.
In effect, the disturbance, by itself, has enough 

effect to make the perceptual signal match the refer-
ence signal.  Looking at figure 8, you can see that this 
would mean a zero error signal and no drive to the 
output function.  So, whenever the output drops to 
zero, we know that the perceptual signal is matching 
the reference signal, even if we can’t see it.

In our model right now, the input sensitivity is 
1, so the perceptual signal is numerically equal to 
the input quantity.  That’s a coincidence, since the 
units are different: physical units outside, impulses 
per second inside.  Even if K1 wasn’t 1, the output 
would still drop to zero when P = R.  Thus, we can 
give a special name to the particular value of input 
quantity (however created) that brings the error signal, 
and hence the output quantity, to zero: the	reference	
level	of the input quantity.  The reference signal clearly 
determines what this reference level will be, but so 
does the form of the input function.

main Points reviewed

All of this is supposed to have established two principal 
ideas.  The first is that control systems control what 
they sense, not what they do.  The second is that con-
trol systems act on the outside world only in order to 
protect a controlled perception against disturbance.

Figure 13: A	 look	 at	 different	 reference	 signal	
effects.	 	As	explained	in	the	text,	the	disturbance	
signal	has	made	 the	 perceptual	 signal	match	 the	
reference	signal.
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As we have demonstrated these principles, we have 
established some other odd facts.  We have found that 
the main effect of negative feedback in a control loop 
is to diminish the effects which disturbances would 
otherwise have on the system’s input quantity.  While 
we have had only one disturbance at our disposal, 
it should be clear that the number or the causes of 
disturbances make no difference.  If ten different 
disturbances were acting at once, they could only end 
up increasing or decreasing the value of the controlled 
input quantity.  Since the system maintains control 
by acting directly on the input quantity, and not by 
acting to oppose the cause of the disturbance, the 
system does not have to take account of the number 
of causes acting, or the phenomena that are involved.  
It acts to oppose the net	effect	of any disturbances on 
the input quantity.

From the point of view of the behaving sys-
tem itself, reality consists of the magnitude of one 
perceptual signal, because that is the only internal 
representation of the outside world.  If the system 
can be said to have a purpose or intention, it must 
be to maintain the perceptual signal matching the 
reference signal.  The reference signal specifies to the 
system what it is to sense, but not what it is to do.  
The output that matches perceptual and reference 
signals is determined by the nature of the feedback 
function and by the strength and direction of any 
disturbances that may be acting.  Whatever sets 
the reference signal, thus effectively controlling the 
perceptions of this system, does not have to know 
anything about how	 the control system comes up 
with a matching perception.

What is perhaps most amazing to a person who 
has not previously worked with negative feedback 
systems is the capability that this system has to 
maintain quite precise control over its own percep-
tual signal, even if its own properties change.  If its 
output apparatus becomes stronger or weaker, or its 
perceptual apparatus becomes more or less sensitive, 
there is scarcely any effect on the perceptual signal.  
As long as some minimum	loop gain is maintained 
and the system does not become unstable and begin 
oscillating, it does not really matter how much loop 
gain there is, or whether most of it is in the output 
or the input function.

A servomechanism engineer might find this ap-
proach somewhat odd.  Why all this fuss about the 
system’s internal perceptual signal? When you build 
a control system for a practical use, you worry more 

about the external variables than internal variables, 
because the customer is interested in the external 
variables.

This is exactly the point.  Living control systems 
are not interested in the external variables.  They can’t 
be.  They don’t know about them, except indirectly.  
All they know is what happens to themselves.  The 
point of behavior is not to accomplish something for 
a user in the external world, but to affect the system 
itself.  Everything that a living system knows about the 
outside world has to first exist in the form of percep-
tual signals, or some other internal effect of external 
events (not all organisms have nervous systems).

In part 3 we will start looking at living systems 
more directly, and this will become much clearer.  
We now know that control systems control, above 
all, their own internal perceptual signals.  Next time 
we will see why	they do that.

In the meantime you might enjoy using this 
simulator to do further explorations.  We have looked 
into only a few of the questions that might be raised 
about control systems.  The simulator can reveal far 
more than we have seen.  For example, it is instruc-
tive to look at the effects of the disturbance strictly 
from the external point of view (plotting I, O, and 
D), and then to look at exactly the same effects from 
inside (plotting P, E, and R).  We haven’t even raised 
the question of what a control system looks like when 
it becomes unstable, how the slowing factors interact 
with loop gain to determine stability, or what hap-
pens when the input function, the output function, 
or both are nonlinear.  Speaking of nonlinearity, you 
might try rewriting the definition of the feedback 
function as follows:

45 DEF FNF(X)=X*X*X/2048 + X/2
and then performing some of the experiments again.  
Try to make the input function logarithmic	(adding a 
constant to make sure you don’t make the perceptual 
signal negatively infinite), and see how the input 
quantity and perceptual signal behave as the reference 
signal or disturbance is changed.

The main objective before the next article in this 
series appears is to understand how a control system 
controls its perceptual signal, and why an external 
observer, who doesn’t know about the controlled 
input quantity, might think the disturbance acts on 
the system to make it respond, like a doorbell.  The 
simulator is there to help you grasp this closed loop 
phenomenon.  I hope it does help. 


