
© 2004 William T. Powers File arm_one_win_calc.pdf from www.livingcontrolsystems.com May 2004

Arm One
Little Man One

This program simulates a human arm reaching out to touch a target the user can move in three dimen-
sions. The arm has three degrees of freedom (two at the shoulder and one at the elbow). The position
of the “fi ngertip” is ray-traced to form two retinal images in which both the target and fi ngertip posi-
tions appear. These images are used to derive x, y, and distance signals, which are controlled by a visual
system that varies the reference signals entering the three kinesthetic higher-order control systems.

THE CONTROL SYSTEMS IN ARM VERSION 1, DELPHI REVISION 1

Note:

If you create a completely unusable set of parameters,
just delete the “params” fi le and restart the program.
A default set of parameters is then used and a new
“params” fi le is created. Also, don’t forget the reset
button, which recovers from most awkward positions.
If the display goes wild, readjust the parameters to
low values, move the target away from the body, and
hit reset. That should cure most problems without
having to leave the program.

If you want to save a particular set of parameters,
just rename the “params” fi le. A new one will be
created. When you want to use the saved one, copy
it to “params,” overwriting the existing fi le.

Comment on this Delphi version

The “Arm One” or “Little Man One” program
was programmed by Bill Powers in 1989 as a DOS
program using the C programming language. This
program and its documentation is available for any-
one interested. By 2004 this program was running
a bit fast on Windows computers in spite of a clock
speed adaptation, and would run in Full Screen only
on a Windows XP computer, so Bill has undertaken
to update the program using the Delphi (Windows)
programming environment, reusing some of the
original code and simplifying, rewriting some. Bill’s
writeup on the following pages, like most of Bill’s
writings, is not a modifi cation of prior writing, but
is written from scratch. Thus additional insight can
be gained by studying the prior DOS version as well.
The illustration featured in the prior documentation
is included in this document, even though the writeup
does not refer to it.

Commenting on the original program in a
private email on May 2, 2004, Bill said: It was
written in the early 90s, as I remember, in C [1989
it would appear]. I seem to recall that there was a
model of a pointing arm published in Science around
then, and I thought it was terrible and decided to
make my own.

Delphi language
Windows

Calculations

2 Arm One—Little Man One—Windows / Calculations

© 2004 William T. Powers File arm_one_win_calc.pdf from www.livingcontrolsystems.com May 2004

INTRODUCTION

There are two levels of control in ArmV1DR1. The
upper level controls the visual relationship between
the fi ngertip and the movable target. The lower level
controls individual joint angles and head angles.

LEVEL 1 CONTROL SYSTEMS

This level contains three independent control systems
controlling joint angle in three degrees of freedom:
shoulder azimuth or X direction (subscript a), shoul-
der pitch or Y direction (subscript b), and external
elbow angle or Z direction (subscript c).

The “shoulder yaw” control system determines
the azimuth of the arm. The reference signal r1a is
limited to keep the arm within bounds on startup,
and the perceptual signal p1a represents the actual
azimuth of the arm, AZ. The error signal is passed
through a leaky integrator with gain g1a, scaled up
by 100 to increase the dynamic range of the integer
calculations, then scaled down again when the output
signal o1a is computed. Here is the source code for
this control system:
procedure azimuth1;
begin
 if r1a > 768 then r1a := 768
 else
 if r1a < -768 then r1a := -768;
 p1a := az;
 e1a := r1a - p1a;
 i1a:= i1a + (100*g1b*e1a - i1a) div s1a;
 o1a := i1a div 100;
end;

In this early version of the model, there were no
physical dynamics, so the actual azimuth of the
arm was simply made equal to the output of the
azimuth control system. The arm was working in
the “imagination mode” in this version. In the later
version 2, this imagination shortcut was opened up
and a two-level kinesthetic control system with an arm
having mass was inserted, making the overall model
more realistic. A Delphi version of that model will
be produced later.

The shoulder pitch control system is organized
identically:
procedure vertical1;
begin
 if r1b < -1024 then r1b := -1024
 else
 if r1b > 1024 then r1b := 1024;
 p1b := t1 + 400;

 e1b := r1b - p1b;
 i1b := i1b + (100*g1b*e1b - i1a) div s1b;
 o1b := i1b div 100;
end;

At the fi rst level, the remaining controller controls
the external angle at the elbow. Limits applied to
the reference signal make sure the arm will not be
hyperextended at the elbow, nor fl exed with the
forearm more than 45 degrees in the direction of
the shoulder.
procedure distance1;
begin
 if r1c > 768 then r1c := 768
 else
 if r1c < -1024 then r1c := -1024;
 p1c := t2 - 768;

{kinesthetic perception of shoulder-finger
distance}

 e1c := -r1c - p1c;
 i1c := i1c + (100*g1c*e1c - i1c) div s1c;
 o1c := i1c div 100;
 end;

There are two additional “gaze” control systems at the
fi rst level which keep the image of the target centered
in the right eye by turning the head in the X and Y
directions. In effect, these two systems foveate the
image of the target in the right eye. The later Version
2 foveated the target on the two foveas independently,
so the eyes converged and diverged when the distance
to the target changed. In this present version, the eyes
gaze in parallel and only the head moves.

These gaze control systems keep the eyes oriented
toward the target, which lessens the effects on angle
measurements for depth perception when the objects
are off the direction of gaze.

procedure gaze1x;
begin
 r1d := 0;
 p1d := TRx;

{perceived x target deviation from gaze
angle}

 e1d := r1d - p1d;
 i1d := i1d - e1d;

{Note: pure integral control system}
 o1d := dmd(i1d,g1d,30);
end;

procedure gaze1y;
begin
 r1e := 0;
 p1e := TRy_;

{perceived y target deviation from gaze
angle}

 e1e := r1e - p1e;
 i1e := i1e - e1e;
 o1e := dmd(i1e,g1e,30);
end;

 Arm One—Little Man One—Windows / Calculations 3

© 2004 William T. Powers File arm_one_win_calc.pdf from www.livingcontrolsystems.com May 2004

LEVEL 2 CONTROL SYSTEMS

The second level of control consists of three inde-
pendent control systems, two acting in azimuth and
elevation, and one in depth.

The azimuth control system uses measures of
Target and Finger direction as seen from the right
eye. The Finger Right-eye x angle FRx is subtracted
from the Target Right-eye x angle TRx to yield a
perceptual signal p1a representing the angular sepa-
ration of fi nger from target. This perceptual signal
is subtracted from the reference signal, normally
zero, r1a, to yield the error signal. The error signal
is integrated to produce the output signal o2a, which

The links to the outside world are very simple in this
version. The outputs of the fi ve fi rst-order control
systems are routed back to the inputs as if lower
control systems had instantly made the perceptions of
the controlled variables match reference signals set by
the output signals. This is where lower systems with
physical dynamics are inserted in Version 2.
procedure link1to0;
begin
 t1 := o1b; {vertical}
 az := o1a; {azimuth}
 t2 := o1c; {distance}
 gazex := o1d; {gaze x}
 gazey := o1e; {gaze y}
end;

A2

A1

A3 azimuth

A5

A4

Y
Z

X
ca

lcu
lat

ion
s

up
pe

r
ar

m

low
er arm

finger tip

shoulder

triangular
target

neck

head
and
eyes

stationary
body

optical ray tracing

elbow

horizon

elevation

Figure 1. Degrees of freedom in basic model
Angles:

A1: Vertical angle between upper arm and horizon. (Positive above horizon. Negative as shown).
A2: Inside elbow joint angle in vertical plane. Always positive. (Shoulder to fi ngertip angle in vertical plane.

Not shown. Computed = A1 + 1\2*(180-A2). (180-A2) = outside elbow angle).
A3: Horizontal angle between arm and body. (Zero when arm is straight ahead. Positive to the right).
A4: Vertical rotation angle between head and body. (Zero when head upright, negative when head tilts down).
A5: Horizontal angle between head and body. (Zero when head straight ahead, positive when turned to the

This fi gure applies to the
DOS program documentation.

No fi gure provided
for this writeup.

4 Arm One—Little Man One—Windows / Calculations

© 2004 William T. Powers File arm_one_win_calc.pdf from www.livingcontrolsystems.com May 2004

becomes the reference signal for the azimuth control
system at level 1 discussed above.

Note the “if purpose” statement. If a boolean
variable purpose is set true, a sine- and cosine- wave
generator is applied to the reference inputs for posi-
tion in azimuth (x) and elevation (y). This results in
the fi ngertip spontaneously tracing a circle around
the target as seen by the right eye, regardless of target
position.
procedure azimuth2;
begin
 if purpose then
 r2a := round(120*cos(elapsedtime))
 else r2a := 0;
 p2a := TRx - FRx;
 e2a := r2a - p2a;
 i2a := i2a + g2a*e2a;
 o2a := -e2a div 100;
end;

The elevation control system works the same way.
Note that the variable called TRy, target right-eye
y position, is terminated by an underline character.
This is because “TRY” is a Delphi key word.
procedure vertical2;
begin
 if purpose then
 r2b := round(120*sin(elapsedtime))
 else r2b := 0;
 p2b := FRy - TRy_;
 e2b := r2b - p2b;
 i2b := i2b + g2b*e2b;
 o2b := g2b div 100;
end;

The last of the level-2 control systems controls the
radial distance of the fi ngertip from the target, us-
ing approximate binocular depth perception. If d
is the distance to the object, then the angle between
the lines of sight from the two eyes to the object is
approximately the interocular separation REx - LEx,
divided by the distance d to the object.
disparity_angle ~ (REx - LEx)/d.

Thus the distance to the object is approxi-
mately

d = (REx - LEx)/disparity_angle.

This control system perceives and controls the radial
distance between target and fi ngertip, which is the
difference between two depth perceptions. If TLRd
is the Target Left-Right disparity angle, and FLRd is
the Finger Left-Right disparity angle, the perceptual
signal representing the radial distance between fi n-
gertip and target is
p1c = (REx - LEX) * (1/TLRd - 1/FLRd)

The requirements of integer arithmetic introduce
some scaling factors, and make use of the “dmd” or
“double-multiply-divide” routine, which multiplies the
fi rst two arguments together and divides the product
by the third argument without losing precision.
procedure distance2;
begin
 r2c := 0;
 p2c := dmd(REx - LEx,4096,TLRd) - dmd(REx -

LEx,4096,FLRd);
 e2c := r2c - p2c;
 i2c := i2c + e2c;
 o2c := -dmd(i2c,g2c,100);
end;

Finally, there is a simple linkage routine connecting
the second-level output signals to the reference signals
of the fi rst-level systems. The azimuth system con-
nection is straightforward, but there is a complication
in the way the output of the depth-control system
connects to the lower systems. The output of the sec-
ond-order elevation control system, o2b, connects to
the reference input of the fi rst-order elevation control
system, r1b. However, the output of the second-order
depth control system not only connects to the fi rst-
order elbow angle controller, but also adds, with a
weight of -0.5, to the fi rst-order elevation controller’s
reference signal. The result is that an output from the
second-order binocular depth control system extends
the forearm at the elbow joint and simultaneously
raises the shoulder angle. Since the two arm segments
are equal, this results in a purely radial motion of the
tip of the arm, the “fi ngertip.”
procedure link2to1;
begin
 r1a := o2a;

{finger azimuth}
 r1b := o2b + o2c div 2;

{finger pitch }
 r1c := o2c;

{finger distance (elbow angle)}
end;

 Arm One—Little Man One—Windows / Calculations 5

© 2004 William T. Powers File arm_one_win_calc.pdf from www.livingcontrolsystems.com May 2004

OVERVIEW OF SIMULATION

There is a procedure called “environment” which
computes the location of the fi ngertip from the
current joint angles and arm segments, and then
computes the various angles from the eyes to target
and fi ngertip—the “ray-tracing” part of the program.
This provides the necessary values of sight-angles
for the control systems above. The “environment”
procedure and the eight control system procedures
are executed one after the other on each iteration of
the simulation, advancing the variables by a small
amount each time. Also, the variables are plotted and
transcribed on the screen each time. By far the great-
est portion of the program is devoted to displaying
the variables and responding to user actions. Delphi
allows the iterations to be done at a controlled rate,
nominally 45 frames per second, independent of
processor speed.

